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• Wild bees provide important pollination
services, but many species are in decline.

• Urban environments often provide floral
rich habitat for bees.

• Bees in urban areas can be exposed to pes-
ticides at level known that have sub-lethal
effects.

• Limiting pesticides in urban environments
will reduce anthropogenic stress on wild
bees.
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Globally documented wild bee declines threaten sustainable food production and natural ecosystem functioning.
Urban environments are often florally abundant, and consequently can contain high levels of pollinator diversity com-
pared with agricultural environments. This has led to the suggestion that urban environments are an increasingly
important habitat for pollinators. However, pesticides, such as commercial bug sprays, have a range of lethal and
sub-lethal impacts on bees and are widely available for public use, with past work indicating that managed bees
(honeybees and bumblebees) are exposed to a range of pesticides in urban environments. Despite this, we still have
a poor understanding of (i) whether wild bees foraging in urban environments are exposed to pesticides and (ii) if
exposure differs between genera. Here we assessed pesticide exposure in 8 bee genera foraging across multiple
urban landscapes. We detected 13 different pesticides, some at concentrations known to have sub-lethal impacts on
pollinators. Both the likelihood of pesticides being detected, and the concentrations observed, were higher for larger
bees, likely due to their greater foraging ranges. Our results suggest that restricting agrochemical use in urban environ-
ments, where the economic benefits are limited, is a simple way to reduce anthropogenic stress on wild bees.
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1. Introduction

Bees are vital pollinators of crops and wildflowers, but many species are
in decline (Powney et al., 2019; Zattara and Aizen, 2021).Whilst the drivers
ober 2022

http://crossmark.crossref.org/dialog/?doi=10.1016/j.scitotenv.2022.159839&domain=pdf
http://dx.doi.org/10.1016/j.scitotenv.2022.159839
mailto:Harry.Siviter@austin.utexas.edu
http://dx.doi.org/10.1016/j.scitotenv.2022.159839
http://www.sciencedirect.com/science/journal/
www.elsevier.com/locate/scitotenv


H. Siviter et al. Science of the Total Environment 858 (2023) 159839
of bee declines are numerous (Goulson et al., 2015; Siviter et al., 2021a;
Vanbergen and Insect Pollinators Initiative, 2013), human-induced land-
scape change is undoubtedly one of the most severe threat to pollinators
(Baude et al., 2016; Potts et al., 2016). Conventional agriculture reduces
floral resources for bees and is heavily reliant on pesticides (insecticides,
herbicides, fungicides) for controlling crop pests (Potts et al., 2016; Siviter
and Muth, 2020; Tilman et al., 2002). In contrast, growing evidence sug-
gests that urban landscapes provide rich floral habitat which benefits bees
(Samuelson et al., 2021, 2020, 2018; Tew et al., 2021, but see Milano
et al., 2019). For example, green spaces such as parks, wildlife refuges,
and residential and community gardens in urban areas are ‘hot spots’ for
bee diversity (Baldock et al., 2019) and urban environments are often asso-
ciated with a greater diversity of bees than surrounding rural locations
(Theodorou et al., 2020). This suggests that cities could be an important
refuge for bee diversity (Hall et al., 2017) and, as urbanisation increases
globally, understanding potential threats to bees in urban environments is
of utmost importance.

One anthropogenic stressor bees may encounter in urban environments
is pesticides (David et al., 2016; Longing et al., 2020; Nicholls et al., 2018).
Commercial ‘bug sprays’ (insecticides), herbicides, and fungicides are
widely available and can be used in urban environments and, in contrast
to agricultural use, the applicator will likely have no training in how to
use or dispose of the product. Indeed, wildflowers in urban environments,
which are often planted to promote bee diversity, may become contained
with pesticide drift from gardens or other sources (Halsch et al., 2020;
Nicholls et al., 2018). Similarly, the nectar and pollen of ornamental
flowers purchased from garden centres often contain a cocktail of different
pesticides (Halsch et al., 2022; Lentola et al., 2017). Furthermore, veteri-
nary flea treatments often contain insecticides, such as imidacloprid and
fipronil, which are thought to contaminate fresh water sources (Perkins
et al., 2021). Public health spraying in urban areas to control mosquitoes
and other pests is another source of pesticide exposure (Long and Krupke,
2016). This means that bees foraging in urban areas may be simultaneously
exposed to complex mixtures of different pesticides.

While it is clear that wild bees can be exposed to pesticides in urban en-
vironments, the majority of pesticide residue studies have been conducted
with domesticated honeybees (Apis mellifera) or commercial bumblebees
(Bombus spp.) (Lawrence et al., 2016; Longing et al., 2020; Nicholls et al.,
2018). Honeybees and bumblebees are social, and many aspects of their
ecology differ significantly from themajority of other bee species, including
their degree of sociality, nesting strategy, and body size. These differences
can result in different exposure routes (Sgolastra et al., 2019). For example,
systemic insecticides can contaminate soil and thus ground-nesting or
cavity-nesting bees that collect soil may be exposed (Willis Chan et al.,
2019; Willis Chan and Raine, 2021; Fortuin and Gandhi, 2021; Rondeau
et al., 2022). Similarly, smaller bees (e.g. Lasioglossum spp.) have limited
foraging ranges compared with bumblebees and honeybees (Greenleaf
et al., 2007), and so if systemic pesticides are applied locally, these bees
may be forced to feed exclusively on contaminated flowers. On the other
hand, larger bees, such as carpenter bees (Xylocopa spp.), which have
greater foraging ranges (Gathmann and Tscharntke, 2002; Greenleaf
et al., 2007), consume more nectar (Peat and Goulson, 2005), potentially
increasing their exposure relative to smaller-bodied bees. While there
have been a few studies addressing pesticide exposure in wild native
bees, these have typically: (i) focused on agricultural environments
(Botías et al., 2016; Hladik et al., 2016; Main et al., 2020); (ii) used pooled
samples from blue vane traps, making it impossible to compare between
different genera (Hladik et al., 2016); or (iii) been limited to a small number
of insecticides (e.g. neonicotinoids) (Botías et al., 2017; Longing et al.,
2020). As such, we know little about wild bee exposure to pesticides in
urban environments.

Here we assessed pesticide exposure in wild bees foraging in commu-
nity gardens and grassland patches within an urban environment. We
netted bees from 10 sites across Travis country, Texas, USA and used liquid
chromatography-mass spectrometry (LC-MS) to identify and quantify the
presence of 92 pesticides. Specifically, we collected bees from 8 genera
2

that varied in their size, nesting type, and degree of sociality. The aim of
the project was to (i) document if wild bees are indeed exposed to pesticides
in urban areas and to compare (ii) the detected pesticides and (iii) their
concentrations across different bee genera.

2. Methods

2.1. Sample collection

Between 22/05/2020 and 09/06/2020, we sampled 10 sites in Travis
Country, Texas, USA, where 5 of the sites were grasslands and 5 were com-
munity gardens, both containing an abundance of flowers (Ballare et al.,
2019). Pesticide use was banned in all community gardens, and grassland
sites were largely managed as prairie restorations and were not treated
with any pesticides to our knowledge. All sites were chosen such that
they were a minimum of 1 km from each other to increase data indepen-
dence (Ballare et al., 2019; Greenleaf et al., 2007). The community gardens
ranged in size from 1885.82 m2 - 17,710.10 m2 and the grasslands ranged
in size from 3867.13 m2 – 740,893.67 m2.

We visited sites in the morning (between 7:00–12:00) when bee activity
was highest. Bees were randomly caught at sites with aerial nets while ac-
tively foraging on flowers and immediately placed into individual vials,
which were then chilled on icepacks. We focused our collections on the
non-native managed bee Apis mellifera and 7 wild bee genera: Agapostemon,
Halictus, Lasioglossum,Megachile,Melissodes,Osmia, andXylocopa (Table S1).
We chose these genera because: (i) these bees were abundant enough for us
to have genus-level replication per site for pesticide residue analysis (see
below); (ii) because they exhibited a range of sociality (e.g., social vs soli-
tary), nesting types (e.g., ground and cavity nesters), and body sizes (see
Table 1); and (iii) they are representative of bee communities in Travis
County (Ballare et al., 2019). We did not collect Bombus pensylvanicus due
to its ongoing range decline (Cameron et al., 2011). We aimed to collect
at least 5 bees per genus at each site per sampling day. If this was not possi-
ble, we returned the following day and resampled the site (maximum
sampling days was 2 per site). After returning to the lab, on their collection
day, all bees were placed in a −80 °C freezer.

We collected 322 bees across all sites from 8 genera (Agapostemon, n =
34, Apis mellifera n = 46, Halictus n = 39, Lasioglossum n = 55, Megachile
n = 32,Melissodes n= 50, Osmia n = 28, Xylocopa n = 38; see Table S1).
Bees from different genera varied in both their mass and abundance at dif-
ferent sites. To ensurewe had enoughmaterial for pesticide residue analysis,
we pooled samples of the smaller, less numerous bees within each site (see
Table S1). This resulted in final sample sizes of: Agapostemon, n = 10;
Halictus n = 9; Lasioglossum n = 10; Megachile n = 10; Osmia n = 8
(note, n refers to the number of pooled samples, not the number of bees
which is stated above, see Table S1). Bees from the other genera were ana-
lyzed individually (Apis mellifera n = 46, Melissodes n = 50, Xylocopa n =
38). After pooling samples (see above), bees were transported to Cornell
Chemical Ecology Core Facility (CCECF) on dry ice and refrozen at−80 °C.

2.2. Chemicals and reagents

Acetonitrile and water of HPLC grade were purchased from EMD
Millipore. LC-MS grade formic acid was purchased from Thermo Scientific.
The 5 M ammonium formate solution, the QuEChERS extraction packets
(4 g MgSO4; 1 g NaCl; 1 g sodium citrate tribasic dihydrate; 0.5 g sodium
citrate dibasic sesquihydrate) and the d-SPE kits (150 mg MgSO4, 25 mg
PSA and 25 C18EC)were purchased fromAgilent Technologies. The deuter-
ated internal standards were purchased from Sigma-Aldrich International.

2.3. Sample preparation

The samples were extracted using a modified version of the EN 15662
QuEChERS procedure (Standardization, 2018) and screened for 92 pesti-
cides (including somemetabolites and breakdown products) by liquid chro-
matography mass spectrometry (LC-MS/MS) (See Table S2 for a complete
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list of the 92 chemicals screened) (Graham et al., 2022, 2021; Halsch et al.,
2020; Urbanowicz et al., 2019).

Whole frozen bees (0.079–0.561 g) were hydrated with 300 μL of
water and then mixed with 700 μL of acetonitrile. The samples were
homogenized for 1 min using ceramic beads (2.8 mm diameter) and a
Bead Ruptor 24 (OMNI International, USA). Specimens of Xylocopa
and Megachile that weighed >600 mg (n = 8) were instead ground
using mortar and pestle in liquid nitrogen, and 500 mg (± 1 %) of the
ground material was transferred to a 2 mL tube and subsequently
mixed with 300 μL of water and 700 μL of acetonitrile using a vortex
shaker for 1 min.

After complete homogenization, 330 mg of EN 15662 salts were
added (203 mg MgSO4; 51 mg NaCl; 51 mg sodium citrate tribasic
dihydrate; 25 mg sodium citrate dibasic sesquihydrate). Samples were
then thoroughly vortexed and centrifuged at 7300 ×g for 5 min. One
mL of supernatant was collected and transferred into a d-SPE (dispersive
solid phase extraction) tube containing 150 mg MgSO4, 25 mg PSA
and 25 mg C18EC. After the d-SPE step, 297 μL of supernatant was col-
lected and 3 μL of internal standard solution (d4-fluopyram 0.15 μg/mL;
d3-pyraclostrobin 0.3 μg/mL; 13C6-metalxyl 0.3 μg/mL) was added. The
samples were filtered through 0.22 μm PTFE and analyzed immediately
thereafter.

2.4. Liquid chromatography and mass spectrometry

The analysis was performed with a Vanquish Flex UHPLC system
(Dionex Softron GmbH, Germering, Germany) coupled with a TSQ Quantis
mass spectrometer (Thermo Scientific, San Jose, CA). The UHPLC was
equipped with an Acquity UPLC BEH C18 column (100 mm × 2.1 mm,
1.7 μm particle size). The mobile phase consisted of (A) Water with 2 mM
ammonium formate and 0.1 % formic acid and (B) Acetonitrile/Water
(98:2, v/v) with 2 mM ammonium formate and 0.1 % formic acid. The
temperature of the column was set at 40 °C and the flow rate of the LC
was 300 μL/min. The elution programwas the following: 1.5min equilibra-
tion (2%B) prior to injection, 0–0.5min (2%B, isocratic), 0.5–15min (2%
→ 70 % B, linear gradient), 15–17 min (70 %→ 100 % B, linear gradient),
17–20 min (100 % B, column wash), 20–20.2 min (100 %→ 2 % B, linear
gradient), 20.2–23 min (2 % B, re-equilibration). The flow from the LC
was directed to the mass spectrometer through a Heated Electrospray
probe (H-ESI). The settings of the H-ESI were: spray voltage 2000 V for pos-
itive mode and 2000 V for negative mode, Sheath gas 55 (arbitrary unit),
Auxiliary gas 25 (arbitrary unit), Sweep gas 2 (arbitrary unit), Ion transfer
tube temperature 325 °C, and Vaporizer temperature 350 °C.

The MS/MS detection was carried out using the Selected Reaction
Monitoring (SRM) mode. Two transitions were monitored for each
compound: one for quantification and the other for confirmation. The
SRM parameters for each individual compound are summarized in
Table 1. The resolution of both Q1 and Q3 was set at 0.7 FWHM, the
cycle time was 0.4 s, and the pressure of the collision gas (argon) was
set at 2 mTorr.

2.5. Data handling and analysis

The residues identified were classified into three groups based on level
of detection. (i) When sample chemicals were below the level of detection,
the residue level was considered to be zero. (ii) When a chemical was
detected, but the concentration was too low to be quantified, we used the
lowest known level of detection (LOD) as our estimated concentration
(aka trace levels). (iii) When the chemical was detected and quantifiable,
we used the quantified value. To compare the likelihood of detection across
pooled samples, we used an information theoretic model selection ap-
proach and selected models when ΔAICc <2. We ran a generalised linear
model, with a binomial error structure (Bates et al., 2015), and the full
model contained genus, site, and the mean bee mass per sample. The
selected model contained only bee genus. P values were obtained using
the function anova.
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3. Results

We detected 13 pesticides across 322 bees (181 samples, see methods
and Table S1), from 8 genera across 10 sites. These included 5 insecticides,
4 fungicides, 3 herbicides, and one synergist (Table 1, Figs. 1, 2). Piperonyl
butoxide (8.3 %), a synergist, was the most commonly detected chemical
across all samples, followed by atrazine (3.3 %), fipronil (2.8 %), diuron
(2.2 %), thiamethoxam (2.2 %), carbaryl (1.1 %), dinotefuran (0.6 %),
imidacloprid (0.6 %), 4-hydroxy-chlorothalonil (0.6 %), azoxystrobin
(0.6 %), tebuconazole (0.6 %), metolachlor (0.6 %), and difenoconazole
(0.6 %).

We found differences in the likelihood of pesticides being detected
between genera (Fig. 2, p < 0.001), with larger bees being more likely to
have detectable levels of pesticide (Fig. 3). 52 % of Xylocopa samples,
50 % Megachile, 12.5 % Osmia, 10.8 % Apis mellifera, and 10 % Melissodes
contained at least one pesticide. No pesticideswere detected inAgapostemon,
Halictus, and Lasioglossum. A total of 11 different pesticides were detected in
Xylocopa, 4 were detected in honeybees (Apis mellifera) andMelissodes, 3 in
Megachile, and 1 in Osmia (Fig. 2). Only 6 samples contained >1 pesticide,
all of which were Xylocopa (5 samples contained 2 pesticides, and 1
contained 3).

Across all compounds, the concentrations detected ranged from less
than 1 pbb to 22 ppb, but were relatively low across all sites (Table 1,
Fig. 1A, Figs. 1B, 4). In some cases, the concentrations were too low to be
detected, andwe used the limit of detection as the estimated concentrations
(see methods and Fig. 1A). The 4 highest concentrations were found in
Xylocopa, where 4-hydroxy-chlorothalonil (22.4 ppb), fipronil (18.5 ppb),
diuron (1.9 ppb), and metolachlor (1.4 ppb) were detected. This was
followed by dinotefuran (2.7 ppb), thiamethoxam (1.3 ppb), and diuron
(1.2 ppb), which were detected inMelissodes (Fig. 4). All other compounds
detected contained residue levels lower than 1 ppb (Table 1, Fig. 4).

4. Discussion

Urban environments are an increasingly important habitat for wild bees
as a consequence of their high floral resources, but exposure to pesticides
has remained a critical concern (Hall et al., 2017; Nicholls et al., 2018). In
this study, we detected 13 different pesticides in wild bees foraging in
urban environments, some at concentrationswith known sub-lethal impacts
on bees (Bonmatin et al., 2015; Siviter et al., 2021c). We also found that
(i) the likelihood of pesticides being detected and (ii) observed concentra-
tions were higher for larger bees, with Xylocopa containing the highest con-
centrations across a range of chemicals. However, both detection rates and
observed concentrations were relatively lowwhen compared to agricultural
Fig. 1.Mean (A) and max (B) concentrations of compounds at each site across all bee ge
detected at trace amounts (see methods for details).

4

environments (Hladik et al., 2016; Main et al., 2020). This suggests that
urban environments, and specifically community gardens and grasslands,
can provide important habitat for wild bees with relatively low levels of
pesticides.

Pesticide residue data for bees beyond honeybees and bumblebees are
few, but our data suggest that exposure differs between genera. Specifically,
we found that larger bees were more likely to contain pesticides. For exam-
ple, 52 % of Xylocopa (~355 mg) and 50 % of Megachile (~105 mg) were
exposed to at least one pesticide, while no pesticides were detected in
Agapostemon, Halictus, and Lasioglossum (~33 mg, ~20 mg, and ~4mg re-
spectively). Given that all samples with few to no pesticides were detected
in small-bodied genera with limited foraging ranges (Gathmann and
Tscharntke, 2002; Greenleaf et al., 2007; Griffin and Haddad, 2021), our
results suggest that larger bees were exposed outside of the sample sites.
We collected data over a limited time period, and thus future research con-
ducted across multiple seasons is required to determine if our observations
might be consistent over the whole year. However, our data indicates that
community gardens and grasslands in urban environments could offer a
vital, relatively pesticide-free environment for smaller bees with limited
foraging ranges.

Bees' nesting environment did not appear to explain the variation we
found in pesticide exposure. Ground-nesting bees (Agapostemon, Halictus,
Lasioglossum and Melissodes, see Table S1) were typically exposed to fewer
pesticides, but they were also smaller, with reduced foraging ranges,
which likely drove this result for a few reasons. First,Melissodes is the larg-
est ground nesting genus included in our analysis and was also the only
member of this group where we detected pesticides (see Table S1 for
mass comparison). Second, the pesticide concentrations in Melissodes
were similar to those found in cavity nesting bees of equivalent sizes
(e.g.,Megachile, see Fig. 4, Table S1). Sociality also did not appear to explain
our results, with solitary, communal nesting, and eusocial bees all exposed
to pesticides at similar detection levels and concentrations. We posit that
detailed studies examining pesticide concentrations in bees that differ in
nesting type and sociality, but forage on the sameflowers in a controlled ex-
periment are required to better understand how nesting type and sociality
influence pesticide exposure (Willis Chan and Raine, 2021).

We only found pesticides in bees with large foraging ranges, suggesting
that exposure occurred in the areas surrounding collection sites, most of
which were residential gardens. While pesticide use was restricted in the
community gardens we sampled, previous studies with honeybees and
bumblebees have shown that bees are routinely exposed to pesticides in
residential gardens (David et al., 2016; Nicholls et al., 2018; Šlachta
et al., 2020). Pesticides, including insecticides, fungicides, and herbicides,
are regularly used in residential gardens, and the co-formulants included
nera sampled. Values are shown in ppb and ¬ indicates that the compound was only



Fig. 2. The detection frequency (% of samples containing compounds) across bee genera. N refers to the number of samples (for number of bees see Table S1). Note that each
stacked bar graph refers to each compound. 52 % of all Xylocopa samples contained at least one chemical compound, but the total percentage here is higher as multiple
chemicals were detected in 5 samples (see Results for further details).

Fig. 3. The average mass (mg) of bees within a sample where no pesticides were detected vs. samples where at least one pesticide was detected. Grey dots = one individual
sample. Beemass for pooled samples (Agapostemon, Halictus, Lasioglossum,Megachile andOsmia) was calculated bydiving the totalmass of the sample by the number of bees in
the sample. Bee mass for individual samples (Apis mellifera, Melissodes, Xylocopa) was the mass of the whole sample.

H. Siviter et al. Science of the Total Environment 858 (2023) 159839

5



Fig. 4. Themean (±SE) concentration (ppb) of all compounds summed from each sample across 8 bee genera. Grey dots indicate individual samples. Samples that contained
no compounds are not shown in this figure to aid with presentation (see Table 1).
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with these commercial products can often increase the impact of their ac-
tive ingredients (Fine et al., 2017; Straw et al., 2021; Straw and Brown,
2021). Interestingly, the most commonly observed chemical in our results
was the synergist, piperonyl butoxide. Piperonyl butoxide is not acutely
toxic to bees, but can increase the efficacy of insecticides including
neonicotinoids (Darriet and Chandre, 2013; Moores et al., 2012), which
could lead to unintended synergistic interactions between chemicals
(Siviter et al., 2021a; Siviter and Muth, 2020). Piperonyl butoxide is often
combined with pyrethroids, which were not assessed in our analysis, but
can be purchased from garden centres for residential garden use. Piperonyl
butoxide is also used in pet flea treatments and thus dog and cat visitation
could potentially contaminate flowering plants in gardens. To our knowl-
edge, no previous studies have considered this potential exposure route,
but antiparasitic drugs and other veterinary pharmaceuticals used on cattle
have been found in wildflowers (Peterson et al., 2021, 2017). While deter-
mining the routes of exposure was beyond the scope of the current study,
past work has indeed documented exposure routes within residential
gardens (Longing et al., 2020; Nicholls et al., 2018), and thus educating
gardeners about alternative pest management practices is clearly vital to
reduce bee pesticide exposure in urban areas.

We found that pesticide concentrations observed in urban environments
were low compared with other data collected in agricultural environments
(Hladik et al., 2016; Main et al., 2020). However, these relatively low con-
centrations may still have negative sub-lethal effects on bees (Pisa et al.,
2017; Siviter et al., 2021c, 2018). The insecticide fipronil was present in
Xylocopa at 18.5pbb. While our analysis cannot determine whether bees
were exposed via direct consumption of the insecticide or via topical expo-
sure, behavioural effects on honeybees are evident even at relatively low
topical doses (Aliouane et al., 2009). Sub-lethal concentrations of fipronil
can also influence honeybee learning and memory (El Hassani et al.,
2009) and stingless bee neurology (Jacob et al., 2015). We also found the
neonicotinoids dinotefuran (at 2.7 ppb) and thiamethoxam (at 1.3 ppb) in
Melissodes. Low concentrations of neonicotinoids can have a plethora of
sub-lethal effects on bees including reduced reproduction (Klaus et al.,
2021; Stuligross and Williams, 2020; Whitehorn et al., 2012), colony
growth (Siviter et al., 2021c), foraging (Feltham et al., 2014; Gill et al.,
2012; Muth and Leonard, 2019; Siviter et al., 2021b) and cognition
(Muth et al., 2019; Samuelson et al., 2016; Siviter et al., 2018).

Bees were also exposed to fungicides and herbicides. Xylocopawere ex-
posed to the fungicides 4-Hydroxy-chlorothalonil (18.5 ppb) and honey-
bees to tebuconazole (1.94 ppb). At present there is no available data on
the sub-lethal impacts of 4-Hydroxy-chlorothalonil on bees, but exposure
to field realistic levels of other fungicides can have sub-lethal impacts on
honeybee learning (DesJardins et al., 2021), lifespan (Fisher et al., 2021),
6

and colony development (Fisher et al., 2021). The fungicide tebuconazole
can also act as a synergist with insecticides, increasing their potential
impact (Willow et al., 2019). Xylocopa were also exposed to the herbicides
diuron (1.9 ppb) and metolachlor (1.4 ppb). Herbicide exposure can have
sub-lethal effects on bee behaviour (Balbuena et al., 2015; Herbert et al.,
2014), but to our knowledge the sub-lethal impacts of diuron and
metolachlor have not been explored at the concentrations observed in our
data. Further studies that determine the sub-lethal impacts of fungicides
and herbicides on non-Apis bees are vital, however, our results confirm
that pesticide exposure in urban areas is likely having sub-lethal impacts
on wild bees.

Urban environments can provide a floral-rich habitat that often sup-
ports a greater diversity of bees than agricultural environments (Baldock
et al., 2019; Samuelson et al., 2021; Tew et al., 2021; Theodorou et al.,
2020). As urbanisation increases globally, and wild bees continue to de-
cline (Powney et al., 2019; Zattara and Aizen, 2021), urban environments
could play an increasingly critical role in wild bee conservation (Hall
et al., 2017). Our results show that wild bees are exposed to low levels of
pesticides in sites that are thought to be ‘pesticide free’, some at concentra-
tionswhich can have negative sub-lethal impacts on pollinators. Restricting
pesticide use in urban environments, where the economic gains of pesticide
application are limited, is a clear and simple way of protecting bees and
other beneficial non-target organisms from the unintended impacts of agro-
chemical use.
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