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Species’ cognitive traits are shaped by their ecology, and even within a
species, cognition can reflect the behavioural requirements of individuals
with different roles. Social insects have a number of discrete roles (castes)
within a colony and thus offer a useful system to determine how ecological
requirements shape cognition. Bumblebee queens are a critical point in the
lifecycle of their colony, since its future success is reliant on a single individ-
ual’s ability to learn about floral stimuli while finding a suitable nest site;
thus, one might expect particularly adept learning capabilities at this
stage. I compared wild Bombus vosnesenskii queens and workers on their abil-
ity to learn a colour association and found that queens performed better than
workers. In addition, queens of another species, B. insularis, a cuckoo species
with a different lifecycle but similar requirements at this stage, performed
equally well as the non-parasitic queens. To control for differences in fora-
ging experience, I then repeated this comparison with laboratory-based
B. impatiens and found that unmated queens performed better than workers.
These results add to the body of work on how ecology shapes cognition and
opens the door to further research in comparative cognition using wild bees.
1. Introduction
Cognitive traits are shaped both by natural selection and affected by an individ-
ual’s experience. Determining the ecological factors that shape cognition often
involves making inter- and intra-specific comparisons [1–4]. While comparisons
with laboratory-reared animals allow for experience to be tightly controlled, to
understand the evolution of cognitive traits, it is necessary to measure cognition
in wild animals [5,6]. Honeybees Apis and bumblebees Bombus have been
models of learning for decades [7,8], with the vast majority of behavioural
work focused on one life stage and caste: the female foragers. As floral general-
ists, foragers can learn associations with a broad variety of stimuli and rewards
[8]. However, bumblebee colonies go through a number of life stages (figure 1)
and include castes with different natural histories and cognitive requirements.
Since learning carries both an energetic cost in the short term [9] and possible
fitness trade-offs [10], we might expect learning abilities to differ between castes
depending on ecological requirements. Variation in learning performance has
been found both within and between bumblebee colonies [11,12], yet castes
aside from foragers are rarely studied. One stage where we might expect a par-
ticularly critical need for learning is for foraging queens: after emerging from
hibernation, their future reproductive success rides on the ability of this
single individual to forage efficiently during the initial stages of colony found-
ing [13]. While foragers are known to be adept at learning associations, the
consequences of making a mistake or foraging sub-optimally are less critical
than for a foraging queen, since foragers can rely on their colony. Similar pat-
terns are seen between honeybee and bumblebee foragers, where honeybee
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Figure 1. The typical lifecycle of a bumblebee colony. In the field experiment, foraging queens that had not yet started colonies (stage 6) were compared to
foraging workers (stage 2) in their ability to learn a colour association. In the laboratory-based experiment, unmated queens and workers were compared at
the same time (stage 3) and with the same experience. Illustration credit: Ann Sanderson https://www.annsciart.com/.
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workers can ‘afford’ to make more mistakes because they are
part of a larger colony [14]. Despite foraging queens being a
critical point in the bumblebee lifecycle, we know almost
nothing about their cognitive abilities (but see [15,16]).

Using wild-caught Bombus vosnesenskii, I compared fora-
ging queens and workers in their ability to learn a colour
association. Associative learning of floral cues is critical for
foraging bumblebees and may correlate with colony fitness
([12] but see [17]). I expected that queens would be better at
learning, given the potential for errors to carry a particularly
high cost for them. I also compared B. vosnesenskii to queens
of another species: Bombus insularis. This species is a brood-
parasitic ‘cuckoo’, which does not form its own colony, but
instead usurps a colony from other bumblebee species [18].
As such, this species does not produce workers, only queens
and males which are raised by the parasitized colony. Despite
these differences in their lifecycle, B. insularis queens experi-
ence similar ecological pressures to non-cuckoo queens to be
highly efficient foragers, and as such I expected that they
would perform equally well at a learning task. To control for
the effects of foraging experience, I then compared unmated
queens (gynes) to foragers at the same stage of the colony life-
cycle in the laboratory, using captive-reared Bombus impatiens.

2. Methods
(a) Field experiment
Field datawere collected betweenApril and July 2020 at sites in the
Great Basin Desert near Reno, Nevada, hereafter ‘desert sites’ and
a montane meadow andmixed conifer forest (Dog Valley, Califor-
nia), hereafter ‘meadow sites’. Desert-bees were active (and
therefore tested) before meadow-bees, and queens before workers
(electronic supplementary material, figure S1). Within the desert
sites,B. vosnesenskii andB. insularis queenswere collected fromBal-
samorhiza hookeri, Prunus andersonii and Salvia dorii, and workers
from Penstemon palmeri, Lavandula angustifolia, Cytisus scoparius
and Carduus nutans. At the meadow sites, queens were collected
from Wyethia mollis, Cirsium scariosum, Penstemon rydbergii,
Penstemon heterodoxus and Vicia sp. and workers from Lupinus sp.

Queen (n = 56) and worker (n = 45) B. vosnesenskii bumble-
bees were netted on flowers at desert and meadow sites;
B. insularis (n = 16) were only found at desert sites. No B. vosne-
senskii queens were carrying pollen and were presumed to be
early-season queens which had not yet started colonies. They
were transferred to plastic ‘preference tubes’ (l × w × h: 2.5 ×
2.5 × 15 cm) with two holes at each end through which stimuli
could be inserted (figure 2a). Bees were left for approximately
3 h, 15 min prior to testing to allow them to habituate to the
tubes and become motivated to forage. Bees were initially
tested for their sucrose responsiveness (electronic supplementary
material), since this has previously been associated with
learning performance in honeybees [19,20]. They were then
trained to learn a colour association using the ‘Free-Moving Pro-
boscis Extension Response’ (FMPER) ([21,22], see also https://
methodsblog.com/2017/09/21/bee-cognition/). Each bee was
trained via differential conditioning where either a yellow or
blue strip of card (Bazzill Cardstock, USA) was rewarding.
Each bee was first given two ‘no choice’ trials, where they were
presented with the rewarding colour (CS+) dipped in 50%
(w/w) sucrose, followed by the unrewarding colour (CS−)
(dipped in water). In each case, the strip was presented to the
bee’s antennae, and it was allowed to drink for 3 s (in the case
of the CS−, bees often did not extend their proboscis after anten-
nating, or only briefly probed the strip). These two ‘no choice’
trials served to motivate bees to partake in the ‘choice’ trials.
For the ‘choice’ trials (five total), I presented bees with both
stimuli simultaneously (figure 2a). Their choice was recorded
as either ‘correct’ or ‘incorrect’, depending on whether they
chose the CS+ or CS− first. Once the bee made contact with
the strip using its antennae or proboscis, it was given 3 s to
drink/sample the solution. This strip was then removed and
the bee was given the other strip for 3 s after making contact
with it; in later trials bees would often walk away from the
CS− without making contact and in these cases, the strip was
removed after the bee rejected it. Eight bees were tested within
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https://methodsblog.com/2017/09/21/bee-cognition/
https://methodsblog.com/2017/09/21/bee-cognition/
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Figure 2. (a) Diagram of the set-up for field-caught bees. (b) B. vosnesenskii queens (n = 56) were better at learning than workers (n = 45) across learning trials
and in the unrewarded test phase. B. insularis queens (a cuckoo species; n = 16) performed as well as non-parasitic queens. (c) Diagram of the set-up for laboratory-
tested bees. (d ) B. impatiens gynes (n = 15) performed better than workers (n = 16) at learning the colour discrimination. Note that in both experiments, bees had
already encountered the stimuli in two ‘no choice’ trials prior to the first learning trial.
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a block by testing bees sequentially within each trial, resulting in
inter-trial-intervals of approximately 10 min for each bee. After
the fifth trial, I gave bees 10 ‘test’ trials where both coloured
strips were unrewarding (contained water); these were con-
ducted in quick succession to prevent loss of motivation. For
each test trial, the colour of strip that the bee first approached
(antennated or exhibited proboscis extension towards) was
recorded. Since many bees stopped responding before the 10
test trials were complete, only the first six were analysed.

(b) Laboratory experiment
Workers (n = 16) and gynes (n = 16) were taken directly from a
single commercially purchased colony of Bombus impatiens (Kop-
pert, USA) which had been given access to a white-wicked
feeder of 30% (w/w) sucrose. Bees were placed in preference
tubes for approximately 2 h, 40 min prior to training. Pilot trials
showed that following the same training protocol as the field
experiment led to bees learning too readily to make comparisons
(all bees performed at 100% correct in the test). As such, the pro-
tocol was adapted to make the discrimination more difficult: a
lighter blue (hereafter ‘aqua’) was used in place of the yellow
stimulus and the choice trials were reduced from five to
four. Bees were given six choices in the test phase. Aside from
these adjustments, the learning and test trials were conducted in
the same way as for the field experiment.

(c) Data analysis
All data were analysed in R v. 4.0.5 using binomial GLMMs in
the nlme package [23] with learning performance (correct/incor-
rect) as the response variable. The effects package [24] was used
to visualize interactions and carry out post hoc tests. For details
of statistical analyses, see electronic supplementary material.

3. Results
(a) Field experiment
At meadow sites, queen B. vosnesenskiiwere more responsive to
sucrose than workers, while there was no difference at desert
sites. B. insularis were much more responsive to sucrose than
B. vosnesenskii queens and workers (electronic supplemen-
tary material, figure S2). At both desert and meadow sites, B.
vosnesenskii queens learned better than workers (learning
trial: z =−3.029; p= 0.002; test trial: z =−4.846; p< 0.0001;
figure 2b). Bees did not significantly improve across learning
trials (z = 1.556; p= 0.120). Across the learning trials, bees
trained to yellow performed better (z = 4.161; p < 0.001; elec-
tronic supplementary material, figure S3), and there were no
differences between desert- and meadow-caught bees (z =
0.281; p = 0.216). In the test trials, an interaction was detected
where at the meadow site, there appeared to be stronger
colour preferences: bees trained to yellow performed better
than bees trained to blue, while this effect was weaker at the
desert site (rewarding colour × location: z=−2.728; p= 0.006;
location: z= 3.576; p< 0.0001; rewarding colour: z= 5.082; p<
0.0001; electronic supplementary material figure S4).

Bombus insularis queens performed as well as B. vosnesenskii
queens (i.e. no difference in either the learning trial: z= 0.449;
p= 0.653, or the test trial: z=−1.442; p = 0.149; figure 2b).
(b) Laboratory experiment
Results from a laboratory-based assay using Bombus impatiens
were similar to the field experiment. There was a strong trend
for gynes to perform better than workers across the learning
trials (z=−1.916; p= 0.055) and gynes outperformed workers
in the test phase, with all but one gyne choosing correctly
100% of the time (z=−3.218; p= 0.001). The proportion of
bees choosing the correct option did not increase across the suc-
cessive trials (z=−0.078 p= 0.938). A colour preference was
seen in the learning trials, where bees were more likely to
choose blue than aqua (z = 3.018; p= 0.003); in the test phase,
colour preferences were not evident (z= 0.514; p= 0.607),
likely because of the high performance across both groups.
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4. Discussion
Social insects have served as models for cognition for decades
[8,25], yet the vast majority of the work has focused on fora-
gers. Here, I found that the cognition of wild queen
bumblebees varied from that of workers in a manner that
would be expected by their ecological role: queens of both
a eusocial and parasitic species were better at learning associ-
ations with a floral (colour) cue and nectar reward, than
foragers. This was the case for both wild-foraging bees, as
well as for captive bees with limited foraging experience
that were tested at the same colony stage. The finding that
despite differences in sociality, eusocial and parasitic queens
did not differ to each other indicates that their learning abil-
ities (or at least, those measured in the current experiment)
may reflect queens’ need to forage effectively at this stage
rather than other differences in their ecologies.

The present results agree with those from a free-flying
assay using laboratory-reared B. terrestris, where three
queens performed better in learning a colour discrimination
than the foragers from their colonies [15] and work with
domesticated honeybees, where 5-day-old unmated queens
performed better than age-matched workers in an olfactory
learning assay [26]. That bumblebee queens are better at
learning associations than foragers may be explained by mis-
takes at this stage carrying relatively large fitness
consequences. It is also possible that variation in learning
performance among foragers is adaptive, since apparent
errors can lead to the discovery of novel food sources [27]
which may benefit the colony as a whole. Finally, it may be
the case that the higher learning performance of queens
does not reflect better learning per se, but rather differences
in sensory sensitivity. For example, queens have both larger
bodies and eyes, likely with more ommatidia [28–30], and
as such may be better able to differentiate the coloured
strips. Determining the underlying mechanism (e.g. differ-
ences in the brain versus peripheral sensory regions) would
help inform function. Whether queen and worker bumble-
bees differ in their brain morphology has not, to my
knowledge, been investigated (but see [31]). However, in
related systems (sweat bees: [32,33]; paperwasps: [34–36]),
queens and workers vary in features of their mushroom
bodies, regions of the brain associated with learning and
memory [37].

In the present study, commercially reared B. impatiens
learned more readily than the wild-caught bumblebees and
thus had to be given a more difficult discrimination task.
While this may reflect species differences, a more likely expla-
nation is that the colour stimuli used were more salient to
captive bees, since they were largely naive to colour in a fora-
ging context. Such a role for prior experience was indicated
by the behaviour of the bees wild-caught from meadow
sites. These bees had yellow colour biases in the learning pro-
tocol, which may be explained by a large number of yellow
flowers (Wyethia mollis) that they were seen foraging on in
this area.

Cognition has been shown to vary with social insects’
foraging role in a few other contexts. Honeybee nectar-
foragers typically have higher sucrose response thresholds
than other roles such as guards, undertakers and pollen-for-
agers [38–40]. This can be explained by it being beneficial for
nectar-foraging bees to be the most discriminatory in their
nectar preferences. Previous work has also shown that honey-
bees that are more responsive to a given concentration of
sucrose are better at learning associations [19,20]. This
relationship is inconsistent with the present results, since
learning performance was not explained by sucrose respon-
siveness. Beyond foragers, a few studies have addressed
male bee cognition and generally found equal performance
to foragers [22,41,42]. This may also be expected by their eco-
logical role: while males do not forage for the colony, they still
need to learn floral associations while foraging for themselves
and mate-searching for queens [22].

The queen stage of the bumblebee lifecycle has been lar-
gely neglected when it comes to cognition, likely because it
can be practically difficult to replicate in a laboratory environ-
ment, and since wild-foraging queens can be challenging to
test in large numbers in the field. Moving forward, the
simple and non-lethal tools used here open the door to
future research using this system [21]. For example, the com-
parison of other cognitive abilities (e.g. spatial), as well as
learning across multiple modalities (e.g. olfactory), would
inform how cognitive traits have been shaped in queens rela-
tive to their workers. Additionally, queens go through
dramatic changes in their physiology throughout their life-
cycle. While they have a critical need for learning
capabilities at the start of their lifecycle, once they develop
their ovaries and produce foragers, they cease foraging,
solely focusing on egg-laying [13]. Variation in cognition
associated with breeding state (or season) have been studied
in vertebrates [43–46], but rarely investigated in invertebrates,
although changes in brain morphology across reproductive
state point to associated differences in cognition ([47,48],
see also [49]).
Data accessibility. Data are published in the Dryad Digital Repository
[50].
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